Flow and particle deposition patterns in a realistic human double bifurcation airway model.
نویسندگان
چکیده
Velocity profiles, local deposition efficiencies (DE), and deposition patterns of aerosol particles in the first three generations (i.e., double bifurcations) of an airway model have been simulated numerically, in which the airway model was constructed from computed tomography (CT) scan data of real human tracheobronchial airways. Three steady inhalation conditions, 15, 30, and 60 L/min, were simulated and a range of micrometer particle sizes (1-20 mum diameter) were injected into the model. Results were then compared with experimental and other numerical results which had employed either similar model geometry or test conditions. The effects of inhalation conditions on velocity profiles and particle deposition were studied. The data indicated that the local deposition efficiencies in the first bifurcation increased with a rise in the Stokes number (St) within St range from 0.0004 to 0.7. Within the same St range, DE in the second bifurcations (both left and right) was dropped dramatically after St increased to 0.17. Also, the second bifurcation in the right side (B2.1, closer to first bifurcation than left side, B2.2) was found to show a much higher (almost double) DE than the left side. This may be due to the fact that the left main bronchus is longer and has greater angulation than the right main bronchus. Generally, the present simulation using a computational fluid dynamic (CFD) technique obtained concurrent results with subtle differences compared to other works. However, due to omission of larynx in the model, which is known to significantly modify airflow and hence particle deposition, the present model may only serve as the "stepping stone" to simulating and analyzing dose-response or inhalation risk assessment visually for clinical researchers.
منابع مشابه
Micro Particles Transport and Deposition in Realistic Geometry of Human Upper Airways
Realistic geometry of human upper airways from mouth to the end of trachea was reconstructed by implementing the CT-Scan images of a male subject. A computational model for analyzing the airflow in the airways was developed and several simulations were performed. To capture the anisotropy of the inhaled airflow in the upper airways, the Reynolds stress transport model of turbulence was used ...
متن کاملTwo-dimensional Simulation of Mass Transfer and Nano-Particle Deposition of Cigarette Smoke in a Human Airway
The chance of developing lung cancer is increased through being exposed to cigarette smoke illustrated by studies. It is vital to understand the development of particular histologic-type cancers regarding the deposition of carcinogenic particles, which are present in human airway. In this paper, the mass transfer and deposition of cigarette smoke, inside the human airway, are investigated apply...
متن کاملAnatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics.
We have studied gas flow and particle deposition in a realistic three-dimensional (3D) model of the bronchial tree, extending from the trachea to the segmental bronchi (7th airway generation for the most distal ones) using computational fluid dynamics. The model is based on the morphometrical data of Horsfield et al. (Horsfield K, Dart G, Olson DE, Filley GF, and Cumming G. J Appl Physiol 31: 2...
متن کاملLES modelling of flow in a simple airway model.
Detailed information about the flow field pattern is highly important in accurately predicting particle deposition sites in the human airway. Flow in the upper airway during heavy breathing can have a Reynolds number as high as 9300, and therefore presents turbulent features. Although turbulence is believed to have an important effect on the airflow and other transport processes in the bronchia...
متن کاملEffects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data.
A number of research studies have employed a wide variety of mesh styles and levels of grid convergence to assess velocity fields and particle deposition patterns in models of branching biological systems. Generating structured meshes based on hexahedral elements requires significant time and effort; however, these meshes are often associated with high quality solutions. Unstructured meshes tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inhalation toxicology
دوره 19 2 شماره
صفحات -
تاریخ انتشار 2007